Small Interfering RNAs: Heralding a New Era in Gene Therapy
نویسندگان
چکیده
Last decades have witnessed a tremendous expansion in knowledge and availability of the genome sequence, which was of great importance for advancements in the field of gene therapy. This led to improved strategies based on use of nucleic acids with sequences complementary to specific target genes in treatment of many diseases. Especially, advancements have been achieved in discovery and use of diverse RNA molecules other than messenger RNAs (mRNAs), transfer RNAs (tRNAs), or ribosomal RNAs (rRNAs). Such RNA molecules, known as non-coding RNAs (ncRNAs), serve diverse biological roles some of which are still elusive (Gesteland 2006). Generally, the ncRNA molecule is functional even when it does not encode for a protein. Recent evidence provided by many projects including the Encode project (The Encyclopedia Of DNA Elements) suggests that larger part of the genomes of mammals and other complex organisms is transcribed into ncRNAs. These ncRNAs are transcribed from both exon and intron DNA regions, and include small interfering RNAs (siRNAs), micro RNAs (miRNAs) and small nucleolar RNAs (snoRNAs), while many of such molecules remain yet to be discovered. A vast amount of evidence demonstrates that ncRNAs play essential roles in cellular physiology. Some biological processes known to be regulated by ncRNAs include transcriptional regulation of genes, gene silencing, messenger RNA stability and translation, development, proliferation, haematopoiesis, apoptosis, protein translocation and chromosome replication (Bühler 2007, Mattick 2006, Lee 1993). There is no doubt that RNA regulatory networks are critical for determining our most complex traits, and they play an important role in disease pathogenesis as well. The specific disease phenotypes might indeed result from deficiency of one or more specific ncRNA instead from protein structural defects, as is usually expected. A challenge for the future might thus be to map the whole cells/organisms complement of ncRNAs and to understand their biological role. Up to now, the use of ncRNAs as a research tool has greatly improved gene therapy approaches for various diseases (Gallaso 2010), but also substantially improved drug discovery and target validation. In this book chapter, we will therefore focus
منابع مشابه
Small interfering RNA; principles, applications and challenges--
Gene silencing using RNAi (RNA interference), has recently been used as a successful laboratory technique in determining the function and control of gene expression and provides a wide range of applications in molecular biology and gene therapy. RNAi is a method of suppressing gene expression. In this direction, a single-stranded RNA molecule of about 21–23 nucleotides, called siRNA (small inte...
متن کاملمهار بیان ژن GFP به وسیله تداخل RNA (RNAi) در دودمان سلولی کارسینومای جنینی P19
Introduction: RNA interference (RNAi) is a phenomenon of gene silencing that uses double-stranded RNA (dsRNA), specifically inhibits gene expression by degrading mRNA efficiently. The mediators of degradation are 21- to 23-nt small interfering RNAs (siRNA). The use of siRNAs as inhibitors of gene expression has been shown to be an effective way of studying gene function in mammalian cells. Ai...
متن کاملDesign, simplified cloning, and in-silico analysis of multisite small interfering RNA-targeting cassettes
Multiple gene silencing is being required to target and tangle metabolic pathways in eukaryotes and researchers have to develop a subtle method for construction of RNA interference (RNAi) cassettes. Although, several vectors have been developed due to different screening and cloning strategies but still some potential limitations remain to be dissolved. Here, we worked out a simple cloning stra...
متن کاملNon-coding RNAs in crop genetic modification: considerations and predictable environmental risk assessments (ERA).
Of late non-coding RNAs (ncRNAs)-mediated gene silencing is an influential tool deliberately deployed to negatively regulate the expression of targeted genes. In addition to the widely employed small interfering RNA (siRNA)-mediated gene silencing approach, other variants like artificial miRNA (amiRNA), miRNA mimics, and artificial transacting siRNAs (tasiRNAs) are being explored and successful...
متن کاملBrothers in arms: DNA enzymes, short interfering RNA, and the emerging wave of small-molecule nucleic acid-based gene-silencing strategies.
The past decade has seen the rapid evolution of small-molecule gene-silencing strategies, driven largely by enhanced understanding of gene function in the pathogenesis of disease. Over this time, many genes have been targeted by specifically engineered agents from different classes of nucleic acid-based drugs in experimental models of disease to probe, dissect, and characterize further the comp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012